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Discrete sedimentation model for ideal suspensions
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Abstract

The sedimentation process of ideal suspensions is simulated using a discrete model in which gravitational, hydrodynamic, particle
interaction and dispersive motions are considered as competitive processes. These mechanisms define motion rules that are implemented
in regular two-dimensional lattices. Results show that the model is capable of producing the whole spectrum of particle-settling of ideal
suspensions. Computer simulation results for the batch settling of rigid spheres in water are obtained for monodisperse systems. Results
compared fairly well with experimental data. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

When a homogeneous suspension of solid particles and
a fluid are allowed to stand in a container, the particles
settle out under gravity at a rate that depends on their size,
shape, weight and concentration. The dependence on con-
centration arises from the interaction between particles,
exerted by means of the velocity distribution generated in
the fluid surrounding each moving particle. The effects of
size and shape of the particles take the simplest possible
form when the particles are identical rigid spheres, of such
small size that the Reynolds number of the fluid motion is
small and inertia forces can be neglected. The mean speed
of fall of a particle is then proportional to the weight and
function primarily of the volume fraction of the particles.
On the other hand, the sedimentation rate of one particle in
a concentrated suspension is always less than the settling
rate of the same particle in isolation. This is partly because
the downward movement of particles causes an equal volu-
metric flow rate of fluid displacement relative to which the
particles must move. If the particles are all uniform in a
concentrated suspension, they will settle with equal veloc-
ities, apart from small statistical variations, and therefore,
there will be few interparticle collisions or nearcollisions.

The sedimentation of a suspension of particles under the
action of gravity has been studied extensively because of
its importance in practical applications. Most of the exist-
ing models for sedimentation focus on settling rate rather
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than solid-concentration profiles, even though the later pro-
vides more information for characterizing sedimentation
processes. This is probably due to experimental difficulties
in measuring solid concentrations as a function of time.

Since the formulation of the first theory of sedimentation
for suspensions of equal spheres by Kynch [1], several au-
thors (Talmage and Fitch [2]; Shannon et al. [3,4]; Fitch, [5])
have used it to develop thickener design methods. Kynch
assumed that the settling rate was a function of local solid
concentration only. The assumption that the local settling
velocity of solids relative to the slurry is a function only
of the local solid concentration is essentially equivalent to
the assumption that the only forces acting on the particles
are caused by the local interstitial fluid velocity. The forces
caused by fluid and solid acceleration are neglected.

The numerical simulation of the motion of particles in
a fluid during sedimentation processes is a very difficult
problem that until today has not been solved to entire satis-
faction. Some techniques, notably finite element (Feng and
Joseph [6,7]; Hu et al. [8]), finite volume, or boundary in-
tegral techniques (Wendland and Zhu, [9]), can reproduce
very well the behavior of a small number of particles, but
they are too computer intensive to simulate many-particle ef-
fects. Other techniques can deal with many particles, but use
phenomenological expressions (Tsuji et al. [10]; Schwarzer
[11]) for the coupling between particles and fluid that are in-
capable of rendering correctly single-particle behavior and
limit severely the predictive power of a method when new
parameter ranges are explored. Some techniques are valid
only for small Reynolds numbers (Bossis and Brady [12];
Brady and Bossis [13]).
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Recently, discrete models have been developed and suc-
cessfully applied to various phenomena such as diffusion-
limited aggregation of particles (Witten and Sander [14]),
invasion percolation (Wilkinson and Willemsen [15]) for
fluid displacement process in porous media, and sedimen-
tation (Huang and Somasundaran [16]).

2. Model

In modeling the settling of particles we consider the fol-
lowing four competitive forces: gravitational, which tends
to drive the particles to the bottom of the sedimentation
unit; hydrodynamic or drag, function of concentration,
which tends to deaden any gravitational effect; a particle
interaction force, which reduces the average settling speed;
and a random force which attempts to disperse the particles
uniformly by dispersive motions over the whole sedimenta-
tion domain. To account for the competitive nature of these
forces we introduce a parameterp representing the ratio of
the probability of particle movement due to gravitation, drag
and particle interaction to the probability of particle move-
ment due to dispersive motion. Huang and Somasundaran
[16] previously introduced this parameter, however forces
other than gravity were not considered in their work. The
main idea of incorporatingp is illustrated in Fig. 1. Ifp≥ 1,
downward motions predominate over Brownian motions.
Notably, if p= 0 dispersive motion rules the movement of
particles and sedimentation never happens. On a square
lattice, when movement is dispersive only, a particle has a
probability of 1/4 to move along each of the four directions,
see Fig. 1(a), but a particle can only move downward when
the movement is due to a combination of gravity, drag and
particle interaction, see Fig. 1(b). Fig. 1(c) represents the
physical situation when all forces are present.

The model has been implemented in the computer for a
square lattice. The algorithm is as follows. First, a square
lattice is established in the whole domain of the sedimenta-
tion column. Second, for a given concentration, particles are
randomly distributed in the sites of the lattice. Third, each
particle is selected to move in one of the four directions
according to a balance of probabilities;p is evaluated as a
function of fluid and solid properties, concentration and

Fig. 1. Moving probabilities along various directions of a square lattice.

degree of particle interaction. The particle is moved to a
new site only if that site is empty and within the boundaries
of the container. If a site is not available for the particle to
move in, then the particle loses its chance of movement until
the next time step. To assure equal moving opportunity for
all particles, every particle is selected only once within each
time unit. The procedure of select-and-move is repeated un-
til a preset time limit is reached. The rejected movements,
due to out-of-boundary or occupied destinations, are also
counted for time measure.

3. Settling velocity

We consider a statistically homogeneous dispersion of
identical rigid spherical particles of radiusR in a Newtonian
ambient fluid of viscosityµ. Inertia forces on either the solid
particles or the fluid will be neglected. When a spherical par-
ticle is dropped in a viscous fluid and allowed to experience
the acceleration of gravity, there is a brief transient period,
after which the particle falls with a constant terminal or set-
tling velocity. The situation is shown in Fig. 2. There are
three forces acting on the particle, i.e. gravity,FG; buoyancy,
FB; and hydrodynamic drag,FD. The forces are collinear, so
we need not be concern with their vector nature. Since the
particle is moving in a straight line with no change in veloc-
ity, there is no change in linear momentum. Thus, Newton’s
second law reduces to the requirement that the forces on
the sphere sum algebraically to zero. Gravity, buoyancy and
drag forces are given by the following expressions [17],

Gravity : FG = 4
3 ρsgπR3 (1)

Buoyancy : FB = −4
3 ρf gπR3 (2)

Drag : FD = −6πµR U (3)

whereρ, is the density of the solid particle,ρf is the den-
sity of the fluid,U is the particle-fluid relative velocity in a

Fig. 2. Forces acting on a sphere falling in a viscous fluid.
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suspension andg is the gravitational acceleration. The grav-
itational force is equal to the weight of the sphere and the
sign is positive because it is directed downward. The buoy-
ancy force, which points upward, is equal to the weight of
the fluid displaced by the particle. The drag force, which
is directed upward, represents the resistance exerted for the
fluid to the movement of the particle. For an isolated particle
in an infinite fluid, the balance of forces may be written as

FG + FB + FD = 0 (4)

In a suspension of homogeneous particles there are vari-
ous other effects, some of them better understood than the
others, that tend to decrease the settling rate of the particles.
To account for this effect we introduce a new force,Fi , in
Eq. (5). Thus, the new balance is,

FG + FB + FD±Fi = 0 (5)

We assume that this new force is just a fraction of the
resulting force between gravity and buoyancy, i.e.

Fi = ±α (FG + FB) (6)

with a being a parameter that can take both positive and
negative values according to the probability of movement
upwards or downwards. Replacing Eq. (1) to Eq. (3) and
Eq. (7) into Eq. (6) gives

4

3
πR3ρsg − 4

3
πR3ρf g − 6πµRU± α

(
4

3
πR31ρg

)
= 0

(7)

Which in turn gives the following expression for the settling
velocity U

U = 1ρ 4
3 πR3g

6µπR
(1 ± α) (8)

Accounting for the effect of concentration on the sedimen-
tation rate is possible by virtue of Famularo and Happel
[18,19]

U

U0
= 1

1 + 1.3φ 1/3
(9)

Eq. (9) applies to random assemblages of particles with

1ρ = ρs − ρ = ρs − (ρsφ − ρf (1 − φ))

= (ρs − ρf ) (1 − φ) (10)

Thus Eq. (8) takes the form

U = 1ρ 4
3 πR3g (1 − φ)

6µπR
(
1 + 1.3φ 1/3

) (1 ± α) (11)

In section Model we defined the parameterp as the ratio
of two probabilities, i.e. the probability of particle move-
ment due to gravitation, drag and particle interaction to the
probability of particle movement due to dispersive motion.

Assuming a linear relationship between probability of move-
ment and velocity, we can write

p ∼ U

UBM
(12)

WhereUBM is the velocity of particles under dispersive
motion. This velocity is constant and independent of particle
size for small particles. The net effect of dispersive motion
is an erratic, random motion of particles through the fluid.
This effect is incorporated in the particle motion rules as
Fig. 1 shows. Dispersive motion becomes important when
the particle size is very small. The lower limit ofp is zero,
which means dispersive motion rules the movement of par-
ticles. The upper limit ofp is a number big enough to reflect
that the movement of particles is governed by a combina-
tion of gravity, drag and interaction forces. Based on these
considerations we can write,

p ∼ U ∼ weight of particle (13)

Eq. (11) is used to quantify the parameterp according to
Eq. (13). The value ofp is then used to find the movement
of particles as Fig. 1 indicates.

4. Drift flux density function plot

The definition of volume average velocity of a suspension
is given by Concha and Bustos [20]:

q = φUs + (1−φ)Uf = Us−(1−φ)U (14)

whereU=Us−Uf is the relative solid-fluid velocity. From
Eq. (14), and sincef(φ)=φUs and q=0 for batch settling
[20],

f (φ) = qφ + φ(1−φ)U(φ) (15)

Then, the drift flux density or batch flux density function
may be defined as,

fb(φ) = φ(1−φ)U (16)

Fig. 3. Upper-interface height vs. time obtained from computer simulation.
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Fig. 4. Distribution of particles obtained at time=0, 50, 100, 200 and 250 for computer simulation.

5. Results and discussion

In this paper solid concentration is expressed in terms
of site occupation density on a square lattice. Computer
simulations were run on a 100×500 square lattice using
different solids concentrations. Fig. 3 shows a quantitative
comparison of settling rates. As expected, the fastest settling
rate occurs whenp→ ∞. This agrees with the fact that heavy
particles falls faster than light particles. Fig. 4 shows a series
of particle-distribution diagrams obtained from a typical run.
It can be seen how the suspension-sediment interface grows
with time as the same way that happens in a sedimentation
process of monodisperse suspensions. The present model is
thus successful in simulating the usual behavior of simple
sedimentation systems.

Fig. 5 shows simulation results made in order to evaluate
the effect of solid concentration over the settling rate. Ini-
tial volume fraction of solids,φ0, ranged from 0.1 to 0.4. In
this figure one can see that for dilute concentration, the set-
tling rate is higher than for concentrated suspensions, which
is expected to happen since for concentrated suspensions,
particles have more probability to have collisions with their
neighbors during their pathway to the bottom of the column.
Otherwise, in dilute concentration, particles have more avail-

Fig. 5. Effect of particle concentration over settling rate.

able unoccupied sites where they can move without inter-
acting with their neighbors. The settling rate is represented
by the slope of upper-interface height versus time obtained
from computer simulations. To take into account the effect
on one particle of the presence of all other particles, all sim-
ulations were performed with the parameterα = ±0.1.

Since we are working with ideal suspensions our model
should reproduce the different possible types of Kynch
processes for batch sedimentation, called the modes of

Fig. 6. (a) Settling plot forφ0=0.05, a shock sedimentation mode. (b)
Flux density function for a shock sedimentation mode.
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sedimentation. These modes are entirely determined by
the constitutive equation of the flux-density function, see
Eq. (16), and initial concentration of the suspension,φ0,
These modes of sedimentation come from the behavior
observed in the regions below the water-suspension in-
terface in a settling plot. Independently of the modes of
sedimentation, all Kynch sedimentation process consists of
two regions: a suspension of concentrationφ∞ and a layer
of clear water on top as shown in Fig. 6(a). Fig. 6(a, b)
show one mode of sedimentation named shock because the
concentration changes suddenly fromφ0 to φ∞. Fig. 6(b)
shows the typical flux density function for a shock where
one can distinguish two points: initial concentration of sus-
pensionφ0 (φ=0.05) from the settling plot in Fig. 6(a) and
maximum possible volume fraction of the solid compo-
nent,φ∞, where it is possible to happen the sedimentation
process.

Fig. 7(a, b) show another mode of sedimentation called
contact discontinuity and a rarefaction wave. In this case,
there is a continuous change in concentration fromφ∗

0 to
φ∞. In Fig. 7(a), one can see three zones of constant con-
centration plus a new one where concentration is not con-
stant. Fig. 7(b) shows the flux density function plot for the

Fig. 7. (a) Settling plot forφ0=0.4, a contact discontinuity and a rarefac-
tion wave sedimentation mode. (b) Flux density function for a contact
discontinuity and rarefaction wave sedimentation mode.

Fig. 8. Drift flux density function plot. Experimental vs. discrete model.

sedimentation process in Fig. 7(a). The nature of this mode
of sedimentation is due to the concentration (φ=0.4).

Fig. 8 compares experimental flux data, Set XII of
Shannon et al. [3], with those calculated from the simula-
tion results of our model. To take into account the effect
of parameterα over the behavior of sedimentation process,
simulations were performed with different values ofα. Our
model captures qualitatively all features of the experimental
curve.

6. Conclusions

In this paper we introduce a new discrete model for the
sedimentation process of ideal suspensions. Gravity, hydro-
dynamic, interaction and random forces are all considered.
The model within its simplicity is capable of reproducing
successfully all features of the sedimentation behavior of
equal size particles. The model is limited neither to fine
particles nor to laminar flows. In the model particles are
treated individually, thus it can be applied easily to systems
with distributed particle size. Though the current simulations
were performed on square lattices, they can be extended to
non-lattice domains.
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